Difference between revisions of "Prótesis Erick"

From UtopiaMaker's Wiki
Jump to navigation Jump to search
(Noviembre)
(Noviembre)
Line 279: Line 279:
 
! TS
 
! TS
 
|-
 
|-
| [https://es.utopiamaker.com/m3duto/user:701458 Salomé Pérez] || **** || 2 Horas || 6 TS
+
| [https://es.utopiamaker.com/m3duto/user:701458 Salomé Pérez] || Teniendo la prótesis se hicieron las pruebas de funcionamiento para realizar la entrega en la fundación con el beneficiario, pero el circuito no estaba soldado de forma correcta por lo que se tuvo que volver a soldar y finalmente no pudo probarse ni realizar la entrega || 10 Horas || 30 TS
 
|}
 
|}
  
Line 299: Line 299:
 
| [https://es.utopiamaker.com/m3duto/user:394704 Nicoll Cáceres] ||  Ayuda en la parte de soldar el circuito || 4 Horas ||  12 TS
 
| [https://es.utopiamaker.com/m3duto/user:394704 Nicoll Cáceres] ||  Ayuda en la parte de soldar el circuito || 4 Horas ||  12 TS
 
|-
 
|-
| [https://es.utopiamaker.com/m3duto/user:830669 Sebastian R.] || **** || 5 Horas || 15 TS
+
| [https://es.utopiamaker.com/m3duto/user:830669 Sebastian R.] || Se soldó el circuito y se lijaron las últimas piezas impresas que correspondían a la nueva cavidad del circuito || 4 Horas || 12 TS
 
|-
 
|-
 
| [https://es.utopiamaker.com/m3duto/user:701458 Salomé Pérez] || Lijado de las ultimas piezas impresas, ayuda en el proceso de soldar el circuito || 4 Horas || 12 TS
 
| [https://es.utopiamaker.com/m3duto/user:701458 Salomé Pérez] || Lijado de las ultimas piezas impresas, ayuda en el proceso de soldar el circuito || 4 Horas || 12 TS

Revision as of 21:07, 10 November 2020

Jefe de proyecto

Profile Photo
Margarita Yate
Br 244719 photo.jpg

Plan de trabajo

  • Programación de prótesis 7-11 Sep
  • 02 de octubre entrega final

Presentación

ErickMother001.jpg

Erick es un niño de 14 años y habita en la ciudad de Bogotá, en el pasado ha sido beneficiario de la fundación con una protesis mecánica personalizada con motivo del personaje Optimus Prime de la pelicula Transformers. En este proyecto se desarrollará una prótesis mioeléctrica para su brazo izquierdo, la cual le servirá para mejorar su movilidad y será la plataforma de entrenamiento para futuras prótesis mas avanzadas.

Objetivo

Este proyecto es un proyecto de vida para Erick. Vamos a documentar aquí todos los modelos de prótesis que va a recibir Erick durante su proceso de crecimiento, tratando de tener para él siempre los mejores avances de la tecnología, para que el uso de la prótesis puede ser cada vez más útil para él.

Recursos

Para llevar a cabo la producción de esta solución se deben tener en cuenta los siguientes perfiles profesionales y el tiempo requerido para hacer entrega de la prótesis en un tiempo no mayor a 30 días.

  • Psicólogo
  • Fisioterapeuta
  • Ingeniero Mecatrónico
  • Ingeniero Electrónico
  • Diseñador Industrial
  • Artista Gráfico

Desarrolladores

Maker Photo Profile
Bustos Fabian (Diseño Electrónico, Mecánico y Programación) Fabian.jpg
Duran Miguel (Impresión 3D y Ensamble) br_914883_photo.jpg
Sebastian Martinez (Diseño 3D y Documentación ) Borra.jpg
Nicoll Cáceres (Diseño Electrónico, Mecánico y Programación) Pend.jpg

Etapas

Evaluación Psicológica

Erick y su madre nos cuentan que la Fundación ya ha construido una prótesis para el muchacho hace algunos años, con motivo del robot Optimus Prime de la serie Transformers, nos han explicado que a causa de un incendio la protesis lamentablemente ya no existe y Erick necesita su protesis para mejorar su desempeño en las tareas diarias.

Evaluación Antropométrica

Presenta malformación al nivel de la muñeca. Por petición del beneficiario la prótesis que se va a producir sera corta, empezando en la parte media del antebrazo, y deberá ejecutar al menos 3 posiciones diferentes en la mano. Utilizará un sensor electromiográfico para controlar los movimientos de la mano.

Se ha tomado el scan 3D con un sensor tipo Kinect, el modelo resultante presenta imperfecciones en la superficie y se debe recortar para obtener solamente la superficie sobre la que se diseñara la prótesis, se utilizó el software Rhinoceros 6 para limpiar el modelo y se elimino la malla no necesaria.

  • Link scan 3D Extremidad: [[1]]

Diseño de Prótesis

Tomando como base el Scan 3D y las medidas tomadas el día Sabado 21 de Septiembre, hemos hecho un modelo base de la prótesis sobre el cual se empezarán a diseñar los componentes de esta solución, bajo solicitud del beneficiario se respetará la superficie exterior del socket y se conservará un diámetro no mayor a ___mm para que su utilización con la ropa sea una experiencia más comoda comparada con su anterior prótesis, hasta el momento el único elemento que puede aumentar el tamaño del brazo es la batería, se hara lo posible por mantener las tolerancias de volumen dentro del límite permitido.

20/11/2019

Erick ha elegido el estilo que quiere para su prótesis, se trata de el modelo de brazo biónico futurista presentado por 3D Systems en Junio de 2015, en la imagen de la derecha se puede apreciar el modelo de prótesis mecánica diseñada para beneficiarios con extremidad a nivel medio de la mano, se tomarán los datos de la evaluación antropométrica para escalar los modelos de los dedos, palma y brazo a las medidas reales, se modificará el diseño original de la palma para alojar los actuadores y el circuito electrónico, la batería se posicionará a la altura del brazo o se definirá si es más viable dejarla para conectar y cargarla en el bolsillo mientras esta alimenta la prótesis por medio de un cable, esto se hace pensando en la facil utilización e interacción con las vestiduras , se utilizarán materiales rígidos y flexibles en diferentes zonas de la protesis dependiendo del análisis mecánico.

Analisis Mecánico

Esta prótesis sera mioelectrica y tendra un movimiento de agarre progresivo, se trata de una estrategia cinemática con la que es posible tener varios niveles de agarre con una sola señal de entrada y un solo actuador mecanico, de este modo la prótesis al recibir un estimulo electromiográfico de nivel bajo, el motor realizaria un agarre tipo pinza tripode (dedos pulgar, indice y medio) y en el momento de recibir una señal de biopotencial mas alto el mecanismo engrana los dedos restantes (dedos anular y meñique), para terminar en una posicion de agarre cilíndrica/esférica, con esto se espera que el beneficiario con un poco de control sobre su actividad muscular en la extremidad, pueda tomar y sostener tanto objetos pequeños utilizando la punta de los tres dedos iniciales o objetos no mayores a la palma de la mano y de un peso no mayor a 150gr. Es posible dejar un grado de libertad de inclinación de 45 grados de extensión en la muñeca, este avance sera opcional dependiendo del espacio que tengamos disponible para un motor adicional.

Esta prótesis utilizara actuadores tipo servo de los utilizados en modelos de RC, estos motores flexionaran los dedos por medio de hilos que se enrollan sobre poleas cuando los motores se activan, el movimiento de los dedos se reduce a un desplazamiento lineal menor a 4cm de longitud en los hilos, que es el rango entre dedos extendidos y completamente contraidos, al utilizar motores de este tipo se debe diseñar una polea compatible con el mismo teniendo en cuenta que la mitad de la circunferencia sea igual al desplazamiento del dedo, esto se debe a que el servo tiene un giro controlable de 0 a 180 grados como se muestra en la siguiente imagen.

Analisis Electrónico

Esta prótesis será eléctrica, esto significa que utiliza un sensor para detectar una fuerza aplicada por la actividad muscular de la extremidad y así activar los motores que ejecutan movimientos en la prótesis. El sensor es Sensor de Presión el cual al detectar una flexión en la membrana el sensor cambia su resistencia interna, esta señal puede ser muestreada analogamente por un microcontrolador Arduino Nano con resolucion de 8 bit (1023 muestras), y por medio de esto se controlara el movimiento de los servomotores de los dedos servomotormg90s y la muñeca servomotors3003.

En la primera imagen se pueden apreciar los componentes necesarios para construir el circuito electrónico, en la segunda imagen se observa las conexiones de los componentes, en la tercera imagen se evidencia a tener en cuenta la posicion del sensor sobre el musculo ya que puede cambiar la señal por lo que se recomienda al beneficiario conservar siempre la misma posición para que la prótesis trabaje de manera normal.

En la imagen 4 se muestra el diagrama de flujo del programa utilizado en el Arduino Nano, el programa basicamente toma datos de un pin análogo y ejecuta diferentes movimientos en los servomotores dependiendo del nivel de señal de entrada, en el siguiente link se encuentra el codigo para que el circuito controle los servos con la señal del sensor. Codigo para Arduino Nano: Código Protesis Erik

Se instaló un switch para indicar si se quiere mover la muñeca o los dedos, con este metodo el usuario tendrá mas control sobre su prótesis.

Impresión 3D

11/12/2019

Se ha realizado una impresión de prueba de la palma y algunos dedos del modelo publicado por 3D Systems y e-Nable, se encuentran defectos de estabilidad en el movimiento de flexión de los dedos, dado que las protesis normalmente estan sometidas a esfuerzos considerables y requieren cierta precisión en los movimientos, se modificará el diseño original de los dedos para que sean articulados y ensamblados con tornillos pequeños, el objetivo es de aprovechar al maximo el torque de los actuadores para que la mano presente buen desempeño en el agarre de pequeños y medianos objetos, para mejorar la efectividad del agarre aún más se tratara de instalar en la superficie de las falanges distales unos fingergrips (Imagen 4 y 5), los cuales han sido muy utiles en las prótesis mecánicas antes producidas en la fundación.

19/12/2019

Se ha terminado el diseño de la muñeca de la prótesis, esta muñeca puede generar posiciones de flexión y extensión en un rango de 120 grados, esto le dara al beneficiario la capacidad de tomar objetos sin modificar su postura corporal, el control de esta rotación se enlistará en los filtros digitales del microcontrolador.

28/01/2020

Se ha modificado el modelo original de los dedos para realizar el ensamble final con tornillos pequeños, se han impreso todos los dedos de la mano y se ha hecho un ensamble temporal para verificar su correcto funcionamiento.

Ensamble

27/02/2020

Calibración y Entrega

Componente Presupuesto
Arduino Nano 13.000
Sensor de Fuerza/Presión 25.000
Servomotor 12.000 und
Resistencia 5.000
Switch 1.000
Cables 7.000
Pilas Li-ion 14.000 und
Cargador $
Adaptador de pilas $
Total $

Programación Prótesis Erik

  1. include <Servo.h>

// Declaramos las variables para controlar el servo Servo servoMotor1; //Dedo pulgar Servo servoMotor2; //Dedo corazón Servo servoMotor3; //Dedo indice Servo servoMotor4; //Dedo anular y meñique Servo servoMotor5; //Muñeca int AnalogPin = 0; // Sensor conectado a Analog 0 int angulo = 0; int Activacion; const int BOTON = 3; int val = 0; int state = 0; int old_val = 0; // almacena el antiguo valor de val

void setup() {

 Serial.begin(9600);

 servoMotor1.attach(5);
 servoMotor2.attach(6);
 servoMotor3.attach(6);
 servoMotor4.attach(8);
 servoMotor5.attach(10);

}

void loop() {

 val= digitalRead(BOTON); // lee el estado del Botón
   if ((val == HIGH) && (old_val == LOW)){
     state=1-state;
   delay(10);
   }
 old_val = val; // valor del antiguo estado
   if (state==1){
    Activacion = analogRead(AnalogPin); // La Resistencia es igual a la lectura del sensor (Analog 0)
     Serial.print("Lectura Analogica = ");
     Serial.println(Activacion);
 if (Activacion>150){
       servoMotor5.write(angulo);
         delay(10);
         angulo++;
        if(angulo>180) angulo = 0;     
    }}

else{

 Activacion = analogRead(AnalogPin); // La Resistencia es igual a la lectura del sensor (Analog 0)
     Serial.print("Lectura Analogica = ");
     Serial.println(Activacion);
     
 if (Activacion>150){

servoMotor1.write(angulo); servoMotor2.write(angulo); servoMotor3.write(angulo); servoMotor4.write(angulo);

    delay(10);
   angulo++;
  if(angulo>180) angulo = 0;
 }
 } 
}

Actividades

Reportes y TS 2020

Noviembre

Jueves 05 Descripción Tiempo TS
Salomé Pérez Teniendo la prótesis se hicieron las pruebas de funcionamiento para realizar la entrega en la fundación con el beneficiario, pero el circuito no estaba soldado de forma correcta por lo que se tuvo que volver a soldar y finalmente no pudo probarse ni realizar la entrega 10 Horas 30 TS
Miércoles 04 Descripción Tiempo TS
Salomé Pérez Se recogió la prótesis en la fundación para realizar las pruebas finales con el circuito soldado 2 Horas 6 TS
Martes 03 Descripción Tiempo TS
Nicoll Cáceres Ayuda en la parte de soldar el circuito 4 Horas 12 TS
Sebastian R. Se soldó el circuito y se lijaron las últimas piezas impresas que correspondían a la nueva cavidad del circuito 4 Horas 12 TS
Salomé Pérez Lijado de las ultimas piezas impresas, ayuda en el proceso de soldar el circuito 4 Horas 12 TS
David Vargas Ayuda en la parte de soldar el circuito y lijar las nuevas piezas de la prótesis 2 Horas 6 TS

Octubre

Viernes 30 Descripción Tiempo TS
Nicoll Cáceres Entrega de prótesis a Erick y margarita 9 Horas 27 TS
Jueves 29 Descripción Tiempo TS
Nicoll Cáceres Desoldar y soldar el arduino y los cables a este - Probar funcionamiento y ajustar al nuevo diseño 14 Horas 42 TS
Miercoles 28 Descripción Tiempo TS
Nicoll Cáceres Arreglo de la Wiki en la sección de análisis electrónico - Poner programación, texto, imagenes de los componentes y diseño de la electrónica 6 Horas 18 TS
Martes 27 Descripción Tiempo TS
Nicoll Cáceres Ir a la fundación para dejar todo soldado, descargar programar del arduino y cambiar el diseño de nuevo 8 Horas 24 TS
Lunes 26 Descripción Tiempo TS
Nicoll Cáceres Soldar arduino 8 Horas 24 TS
Viernes 23 Descripción Tiempo TS
Nicoll Cáceres Pasar todo al arduino mega ya que el ardino nano se daño - Visita a la fundación y mostar parte electrónica a Erik y Margarita 9 Horas 27 TS
Jueves 22 Descripción Tiempo TS
Nicoll Cáceres Ensamble de Arduino y baterías en la pieza donde va la parte electrónica 9 Horas 27 TS
David Ensamble de Arduino y baterías en la pieza donde va la parte electrónica y ajustes de inobedientes para el correcto funcionamiento de la mano 5 Horas 15 TS
Miércoles 21 Descripción Tiempo TS
Nicoll Cáceres Visita a la fundación: Entrega de materiales - Entrega de piezas impresas en 3D - Plano electronica en la pagina " Circuit design TINKERCAD" para que david se pueda guiar 8 Horas 24 TS
David Recoger piezas en la fundación y trabajar en el ensamble de la parte electrónica con la mano de la prótesis 2 Horas 6 TS
Martes 20 Descripción Tiempo TS
Nicoll Cáceres Unión de circuitos 7 Horas 21 TS
Lunes 19 Descripción Tiempo TS
Nicoll Cáceres Unión de la parte de programación del switch a la programación de la prótesis 7 Horas 21 TS
Viernes 16 Descripción Tiempo TS
Nicoll Cáceres Parte electronica del switch y programación 7 Horas 21 TS
David Nuevo diseño CAD de la parte electrónica debido al cambio de batería 2 Horas 6 TS
Jueves 15 Descripción Tiempo TS
Nicoll Cáceres Diseño en hoja del sistema electrónico y programación del switch 6 Horas 18 TS
Miércoles 14 Descripción Tiempo TS
Nicoll Cáceres Investigación y propuesta para el cambio de bateria en la prótesis 7 Horas 21 TS
Martes 13 Descripción Tiempo TS
Nicoll Cáceres Corrección de diseño en el tornillo 6 Horas 18 TS
Viernes 9 Descripción Tiempo TS
Nicoll Cáceres Diseño en el tornillo 8 Horas 24 TS
Jueves 8 Descripción Tiempo TS
Nicoll Cáceres Propuesta de diseño de la parte electronica 7 Horas 21 TS
Miercoles 7 Descripción Tiempo TS
Nicoll Cáceres Ir a la fundación - recoger materiales y nuevas ideas para la parte electronica 7 Horas 21 TS
Martes 6 Descripción Tiempo TS
Nicoll Cáceres Propuesta para el diseño de la parte electronica 7 Horas 21 TS
Lunes 5 Descripción Tiempo TS
Nicoll Cáceres Reunión con los practicantes - Hacer y enviar lista de materiales 7 Horas 21 TS
Viernes 2 Descripción Tiempo TS
Nicoll Cáceres Prueba de la prótesis y escoger la bateria 7 Horas 21 TS
Jueves 1 Descripción Tiempo TS
Nicoll Cáceres Reunión con Johan y empezar a armar la próetis 7 Horas 21 TS

Septiembre

Miércoles 30 Descripción Tiempo TS
Nicoll Cáceres Ajuste de los dedos y pruebas de estos cogiendo algún objeto 7 Horas 21 TS
Martes 29 Descripción Tiempo TS
Nicoll Cáceres Investigación de alternativas de baterias para la prótesis 7 Horas 21 TS
Lunes 28 Descripción Tiempo TS
Nicoll Cáceres Reunión con David, desarme de prótesis, empezar a armar la prótesis 7 Horas 21 TS
David Reunión con David, desarme de prótesis, empezar a armar la prótesis 1 Horas 3 TS
Viernes 25 Descripción Tiempo TS
Nicoll Cáceres Reunión con Diana, Reunión con David para rediseñar la prótesis 7 Horas 21 TS
Jueves 24 Descripción Tiempo TS
Nicoll Cáceres Ajustes de prótesis 7 Horas 21 TS
Miercoles 23 Descripción Tiempo TS
Nicoll Cáceres Investigación de otras alternativas y diseño 7 Horas 21 TS
Martes 22 Descripción Tiempo TS
Nicoll Cáceres Investigación de otras alternativas y diseño 7 Horas 21 TS
Lunes 21 Descripción Tiempo TS
Nicoll Cáceres Corrección de errores en la prótesis 7 Horas 21 TS
Sábado 19 Descripción Tiempo TS
Nicoll Cáceres Visita a la fundación, ajuste de prótesis con Erik y corrección de errores 5 Horas 15 TS
Viernes 18 Descripción Tiempo TS
Nicoll Cáceres Ajuste prótesis 7 Horas 21TS
Jueves 17 Descripción Tiempo TS
Nicoll Cáceres Circuito y funcionamiento 7 Horas 21 TS
Miércoles 16 Descripción Tiempo TS
Nicoll Cáceres Circuito y soldadura 7 Horas 21 TS
Martes 15 Descripción Tiempo TS
Nicoll Cáceres Prótesis 7 Horas 21 TS
Lunes 14 Descripción Tiempo TS
Nicoll Cáceres Prótesis 7 Horas 21 TS
Viernes 11 Descripción Tiempo TS
Nicoll Cáceres Programación código 7 Horas 21 TS
Jueves 10 Descripción Tiempo TS
Nicoll Cáceres Reunión con Johan García 1 Horas 3 TS
Nicoll Cáceres Programación código y parte electrónica de la prótesis 6 Horas 18 TS
Miercoles 9 Descripción Tiempo TS
Nicoll Cáceres Programación código y parte electrónica de la prótesis 7 Horas 21 TS
Martes 8 Descripción Tiempo TS
Nicoll Cáceres Entrega de materiales 3 Horas 9 TS
Nicoll Cáceres Programación de la prótesis 5 Horas 15 TS
Lunes 7 Descripción Tiempo TS
Nicoll Cáceres Programación de la prótesis 4 Horas 12 TS
Nicoll Cáceres Circuito de la prótesis 3 Horas 9 TS
Viernes 4 Descripción Tiempo TS
Nicoll Cáceres Revisión electrónica y de programación, formulación y diseño de nuevas ideas 7 Horas 21 TS
Jueves 3 Descripción Tiempo TS
Nicoll Cáceres Reunión con Johan García para aprobación de ideas y entrega de la lista de materiales 2 Horas 6 TS
Nicoll Cáceres Diseño de idea 5 Horas 15 TS
Miércoles 2 Descripción Tiempo TS
Nicoll Cáceres Reunción con Johan García y Fabian Bustos para despejar dudas con respecto a la prótesis, funcionamiento y diseño. 1 Horas 3 TS
Nicoll Cáceres Investigación y lista de los materiales faltantes, planeación del proyecto. Comprobación del funcionamiento de los servos con su respectivo código. 6 Horas 18 TS
Martes 1 Descripción Tiempo TS
Nicoll Cáceres Visita a la fundación de materialización 3D con el fin de recoger la prótesis de Erik 3 Horas 9 TS
Nicoll Cáceres Observar detalladamente la prótesis de Erik, realizar un informe de dudas y sugerencias con respecto al diseño y la parte electrónica 5 Hora 15 TS

Agosto

Lunes 31 Descripción Tiempo TS
Nicoll Cáceres Investigación y nuevas ideas para la prótesis de Erik 3 Horas 9 TS

Marzo

Sábado 14 Descripción Tiempo TS
David F Reunión del proyecto 1 Hora 3 TS
Fabian Bustos Toma de medidas y ajuste de detalles finales 6 Horas 18 TS

Febrero

Jueves 27 Descripción Tiempo TS
Fabian Bustos Ensamble de Brazo, Mano y Diseño de Socket 6 Horas 18 TS
Sebastian Martinez Medicion y ajuste de los hilos 3 Horas 9 TS
Lunes 24 Descripción Tiempo TS
Lunes 24/02 Valentina Osorio Impresión de tapa superior e inferior del brazo de la prótesis 2 Horas 6 TS
Lunes 24/02 María José Impresión de tapa superior e inferior del brazo de la prótesis 2 Horas 6 TS
Lunes 24/02 Fabian Bustos Diseño de tapa superior e inferior del brazo de la prótesis 2 Horas 6 TS

Enero

Jueves 30 Descripción Tiempo TS
Fabian Bustos Diseño de brazo, compartimiento para circuitos 6 Horas 18 TS
TODO:  Impresión de piezas del brazo.
Miercoles 29 Descripción Tiempo TS
Fabian Bustos Diseño de brazo, compartimiento para circuitos 6 Horas 18 TS
TODO:  Continuar el diseño del brazo.
Martes 28 Descripción Tiempo TS
Fabian Bustos Impresión y ensamble de los dedos en la palma 6 Horas 18 TS
TODO: Continuar el diseño del brazo, acondicionar compartimiento para circuitos.
Miercoles 22 Descripción Tiempo TS
Fabian Bustos Impresión de dedos medio e indice 6 Horas 18 TS
TODO: Continuar la impresión de los dedos.
Martes 21 Descripción Tiempo TS
Fabian Bustos Impresión de dedos meñique y anular 6 Horas 18 TS
TODO: Continuar la impresión de los dedos.
Lunes 20 Descripción Tiempo TS
Fabian Bustos Edición de modelo de dedos para impresión 6 Horas 18 TS
TODO: Continuar la edición de modelos de los dedos para impresión.

Reportes y TS 2019

Diciembre

Domingo 22 Descripción Tiempo TS
Fabian Bustos Edición de modelo de dedos indice y medio para impresión en material flexible 8 Horas 24 TS
TODO: Continuar la edición de modelos de los dedos para impresión en material flexible. 
Viernes 20 Descripción Tiempo TS
Fabian Bustos Edición de modelo de dedo meñique para impresión en material flexible 6 Horas 18 TS
TODO: Continuar la edición de modelos de los dedos para impresión en material flexible. 
Jueves 19 Descripción Tiempo TS
Fabian Bustos Impresión 3D de pieza para la muñeca 2 Horas 6 TS
TODO: Modificar modelos de los dedos para impresión en material flexible. 
Jueves 12 Descripción Tiempo TS
Fabian Bustos Diseño final de la muñeca para impresión 3D 12 Horas 36 TS
Sebastian Martinez Impresión 3D de pieza para la muñeca 1 Hora 3 TS
TODO: Repetición de impresión debido a corte de energia en la maquina.
      Preparar los modelos finales disponibles para impresión en FabLab M3D Bogota.
      Modificar modelos de los dedos para impresión en material flexible. 
Martes 10 Descripción Tiempo TS
Fabian Bustos Impresión y prueba de palma y dedos 4 Horas 12 TS
TODO: Preparar los modelos finales disponibles para impresión en FabLab M3D Bogota.
      Modificar modelos de los dedos para impresión en material flexible. 
Lunes 9 Descripción Tiempo TS
Fabian Bustos Diseño final de Socket y mecanismo de inclinación de la muñeca 4 Horas 12 TS
TODO: Finalización de modelos para impresión y diseño de manual de ensamble.
Domingo 8 Descripción Tiempo TS
Fabian Bustos Diseño final de Socket y mecanismo de inclinación de la muñeca 8 Horas 24 TS
TODO: Finalización de modelos para impresión y diseño de manual de ensamble.

Noviembre

Miercoles 20 Descripción Tiempo TS
Fabian Bustos Escalado de los nuevos dedos para impresión, Simulacion en software para analisis de posición de batería 3 Horas 9 TS
TODO: Diseño del sistema mecánico y adecuación de espacios para circuitos, actuadores, sensor y batería
Viernes 15 Descripción Tiempo TS
Fabian Bustos Diseño básico de Socket y adaptacion a la mano 3 Horas 9 TS
Sebastian Martinez Escalado de palma y dedos a medida de la extremidad derecha 3 Horas 9 TS
TODO: Diseño del sistema mecánico y adecuación de espacios para circuitos, actuadores, sensor y batería

Octubre

Miercoles 9 Descripción Tiempo TS
Fabian Bustos Edición de Scan 3D en Rhinoceros 4 Horas 12 TS
Sebastian Martinez Procesamiento del escaneo y actualizacion de la Wiki 1 Hora 40 minutos 5 TS
TODO: Diseño de socket con el scan 3D disponible

Septiembre

Sabado 21 Descripción Tiempo TS
Fabian Bustos Scanner 3D y Toma de Medidas 2 Horas 6 TS
Comentarios: Queda pendiente la asignación de colaboradores